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Abstract

In this paper, we will introduce some practical problems
on transport networks, where there are some partici-
pants who want to travel from an origin node to a desti-
nation node. To measure network connectivity and vul-
nerability under unexpected incidents like nature disas-
ters, we estabilish a two-player zero-sum game model,
and evaluate the network reliability by the expected
travel cost at the equilibrium of this game. Also, we in-
troduced one-traveller model, multiple-traveller model
and relaxed pessimism model in this game for different
real-world modelings.

Introduction
As a mathematical background for the analysis of interac-
tive processes for decision-making, game theory is more and
more widely apllied in the field of transport network analy-
sis. On a transport network, one or more travellers wish to
travel from their origin node to destination node with lowest
cost, such as distance, time, etc. Recent researches mainly
focus on two topics:

One is the traffic user equilibrium, which determines the
traffic flow on every link of the network; Another main ap-
plication topic is reliability problems, which focuses on the
network performance and response under the disability of
one or more links. This is a trending topic nowadays, and
many researchers study network reliability, or vulnerability
with different models, settings and measures.

A most conservative way is to calculate the expected time
cost of each path according to the probability of failure;
however, in most real situations failure of links is rare, so
it’s hard to estimate the probability of each link.

To avoid the most extreme cases, one paradigm views the
problem as a game, where travellers or network dispatcher
determine paths for traffic flow in the expectation to min-
imize the expected cost, and another agent viewed as the
nature or an evil attacker, who tries to maximize the cost
by damaging one or more links, is introduced. So this be-
comes a two-player zero-sum game, and we can evaluate the
network reliability by the expected travel time at the equilib-
rium of this game.
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In the next, we will discuss the main methods and results
from different researches. They measures the network vul-
nerability under various transport problems. The first model
only considers the behavior of one traveller, and the cases of
multiple travellers are discussed later.

Vulnerability from Individual Perspective
In the earliest study of this field (Bell 1999), the author pro-
posed a model containing two players in one game: a trav-
eller that’s going to travel from an origin node to a desti-
nation node in a graph, and the nature as an opponent that
causes an incident on one or several links in the graph. Both
agents in this game adopt mixed strategies, in the expecta-
tion to minimize (the traveller) or maximize (the nature) the
expected travel time. This turns out to be a two-player zero-
sum game, and a Nash equilibrium in this game is promised
to exist.

Formally speaking, we have links corresponding to edges
of the graph, and paths from origin to destination. The infor-
mation about all possible paths is contained in the incidence
matrix: aik = 1 if link i is on path k; 0 otherwise. Also, we
need the edge-vertex incidence matrix: eni = 1 if link i en-
ters node n,−1 if leaves node n, and 0 otherwise. So a valid
path k should satsify

∑
i aikeni = bn, where bn = 1 if node

n is the destination; −1 if n is the origin, and 0 otherwise.
(Note: in the original paper bn = 1 if n is origin or desti-

nation, which is an incorrect definition.)
And the opponent’s choices are expressed as differert sce-

narios, and the link i has link cost cij under the scenario j.
With this setting, the nature’s choice of destorying links can
be transferred into choices of different scenarios in which
the influenced links will lead to high link cost.

Above all, we have established the traveller’s srategies
as choosing different paths, and the nature’s strategies as
choosing different scenarios. Both agents can adopt mixed
strategies. Denote hk as the probability that path k is taken,
qj as the probability of scenario j. Also, we define pi as the
probability that link i is taken, then we have the following
equations:

pi =
∑
k

hkaik,∀i (1)

Also, we define gkj of the cost for path k under scenario j,



and TC as the expected total cost. So we have:

gkj =
∑
i

aikcij (2)

TC =
∑
i

∑
j

piqjcij =
∑
k

∑
j

hkqjgkj (3)

So we can naturally draw a solution to this problem: first
enumerate all paths and derive the aik matrix and thus gkj
matrix as (2). Then from the minmax theorem, we can find
a equilibrium point of (3).

However, when the graph becomes large, enumerating all
paths and generate corresponding incidence matrices in the
graph can be complex and costly. Hence, the author pro-
posed an iterating solution, which is named as the method
of successive averages(MSA), to solve the problem effi-
ciently. The idea is to play according to the opponent’s his-
tory moves. Suppose the strategies in the k-th round are h(k)

and q(k) respectively. If this is not an equilibrium, either
the traveller and the nature can find a pure stratetgy best re-
sponse. Formally writing, the iteration algorithm is:

1. Given the nature’s strategy q(k), the traveller chooses his
best response as x(k). We may only consider pure strate-
gies here, so here we can calculate the expected link cost
of each link, and apply shortest path algorithm minimiz-
ing the expected cost instead of enumerating all possible
paths.

2. The traveller adopts h(k+1) = k
k+1h

(k) + 1
k+1x

(k).

3. The nature finds the best response to h(k+1), as y(k).

4. The nature adopts q(k+1) = k
k+1q

(k) + 1
k+1y

(k).

5. k ← k + 1, and we start another round of iteration until
convergence.

In numerical examples, the author found that the value of
expected time converges fast, while the strategies for the
two players converge slowly. This may refelct the non-
uniqueness of equilibrium strategies.

In his later work (Bell 2003), the author commented that
although he hadn’t found a proof of convergence, an exam-
ple where convergence to an equilibrium trip cost does not
occur rapidly hadn’t been discovered.

Reliability from the System Perspective
In the above paper the author made an assumption that the
link cost is traffic-independent, so that we only need to
look into one participant. This seems true when the mea-
sure is travelling distance or something else, but in most
cases there’s no reason to make the assumption that different
Origin-Destination pairs may be considered separately since
the travel cost, for example the travel time can be traffic-
dependent. When the traffic is heavy on some links, the time
cost to pass the link can be longer, which is consistent with
our real-life experience.

Another paper A game theory approach for the measure-
ment of transport network vulnerability from the system
prospective (Qiao et al. 2014) answers the question when

there’re multiple agents in one network. They mainly fo-
cused on the total travel time as a system-level measure, and
they adopted a more practical model of a BPR (Bureau of
Public Roads) function between link time cost and link traf-
fic flow:

t(x) = f(1 + α(x/c)β) (4)

where f measures the free flow time through this link, c
measures the capacity of the link. These two parameters can
vary for different links and scenarions. There’re also fixed
parameters α, β, and x is the traffic flow on this link.

In this model, there’re multiple sources and sinks with
various flow amounts dn (positive for sink nodes, negative
for source nodes) in this network, and we’re going to dis-
patch the flows under the threaten of different failure sce-
narios, so as to reach the minimum expected cost. This set-
ting seems to be not that practical since in most real cases
the O-D pairs are designated for travellers, but it’s simple
to analyze since there’s only one objective function in the
optimization, and it suffices to measure the network vulner-
ability.

Set the traffic flow on the link i as xi, the probability of
scenario j as yj , and the capacity parameter of link i under
scenario j as cij . So the minmax problem can be formulated
as:

min
xi

max
yj

xitij(xi)yj (5)

s.t.∑
j

yj = 1,
∑
i

enixi = dn,∀n, xi ≥ 0, yj ≥ 0. (6)

The minmax problem can be broken into the following
bi-level optimization problem. In the upper level, given a
fixed link flow strategy, the opponent tries to maximize the
expected cost by adjusting the disturbing probabilities; In
the lower level, the network dispatcher performs a system
optimal assignment given the link disturbance probabilities.
Upper level:

max
yj

∑
i

∑
j

xitij(xi)yj , (7)

s.t. ∑
j

yj = 1, yj ≥ 0. (8)

Lower level:

min
xi

∑
i

∑
j

xitij(xi)yj , (9)

s.t. ∑
i

enixi = dn,∀n, xi ≥ 0 (10)

The upper level is simply a linear programming problem,
whose solution is promised to exist. The existence of the
lower level optimization is not that obvious; in fact, the con-
straints are convex, and we can prove that the objective func-
tion is also convex:



We have the entries in the Hessian matrix

Hm,n = 1m=n
∂2

∂xm∂xn

∑
i

∑
j

xitij(xi)yj

 (11)

= 1m=n

∑
j

(2t′mj(xm) + xmt
′′
mj(xm))yj . (12)

So the determinant of the Hessian matrix is

detH =
∏
m

∑
j

(2t′mj(xm) + xmt
′′
mj(xm))yj

 . (13)

And from the BPR cost function,

2t′mj(xm) + xmt
′′
mj(xm) =

fmjαβ(β + 1)

cβmj
xβ−1mj ≥ 0. (14)

Thus detH ≥ 0, implying the convexity of the objec-
tive function. From the convex optimization techniques, we
know that we’re able to find the unique system optimal as-
signment with, for example gradient descent method.

In order to solve the equilibrium problem, the author pro-
posed an iteration algorithm which is similar to the MSA
method discussed in the last section:

1. Initialize y(0) as choosing all scenarios with equal proba-
bility. Solve x(0) as the system optimal assignment under
y(0).

2. Given the assignment x(k), the nature chooses the most
critical path to disturb, that is, to find

j = argmax
j

∑
i

x
(k)
i tij(x

(k)
i ).

denote the pure strategy of scenario j as y′(k+1), and up-
date y(k+1) with MSA:

y(k+1) =
k

k + 1
y(k) +

1

k + 1
y′(k+1).

3. Given the new scenario probabilities y(k+1) in the above,
the dispatcher looks for a new system optimal assignment
x′(k+1) and update x(k+1) using MSA:

x(k+1) =
k

k + 1
x(k) +

1

k + 1
x′(k+1).

4. Go to step 2 if the stopping criteria are not satisfied.

Convergence of this iterating algorithm is still yet to be
proved.

Using this method, the author analyzed an example and
pointed out that two parallel roads may work better than a
single link with doubled capacity, even if the failure penalty
(capacity reduction) are the same in the two cases. This may
be heuristic to our real-life road designing.

Let’s get relaxed:
Measuring Our Pessimism about the Network
It’s necessary to point out that, in the above, the travellers or
the dispatcher always aims at improving the performance at
the worst case, which shows our extreme pessimism. But
sometimes we can relax our the degree of pessimism by
adding a weighted entropy function, as Bell discussed in his
later work (Bell 2014).

Take the first one-traveller model as an example: The au-
thor suggests to add an entropy term to the cost function,
as:

TC =
∑
k

∑
j

hkqjgkj −
1

θ

∑
j

qj ln qj , (15)

here θ measures out pessimism in the way that the larger θ
is, the more pessimistic we’re.

In this case, the explicit solution for qi is easy to find:

qj =
exp(θ

∑
k hkgjk)∑

s exp(θ
∑
k hkgjk)

(16)

And thus

min
h
TC(h) = min

h

1

θ
ln
∑
j

exp

(
θ
∑
k

hkgjk

)
(17)

s.t. ∑
k

hk = 1, hk ≥ 0. (18)

Note that the gradient of the objective function

∂

∂hk
TC(h) =

∑
j

qjgjk (19)

is exactly the expected travel cost via path k. So we can still
find the path with lowest expectation cost and descent in this
direction since the gradient is the steepest. This leads us to
the following revised and shortened MSA:

1. Initialize q(0) as choosing all scenarios with equal proba-
bility. k ← 0.

2. For a given scenario probability distribution q(k), calcu-
late the expected cost via each link and find the path with
shortest cost using shortest path algorithms. Denote this
auxiliary strategy as y(k+1), and update the strategy us-
ing MSA:

h(k+1) =
k

k + 1
h(k) +

1

k + 1
y(k+1)

3. Calculate q(k+1) given h(k+1) via equation (16).

4. In the stop criteria are not satisfied, take k ← k + 1 and
start a new round of loop.

The author notified that the solution is unique in q since
(15) is convex in q, so we can find out the critical links and
protect them accordingly.



Conclusion
Above all, we have applied the two-player zero-sum game to
analyze the vulnerability of a road network, and we’re able
to detect the sensitive links and strengthen the protection
over them. However, we only discussed the model of one
traveller and multiple travellers with undesignated origin-
destination pairs, and the case of multiple travellers with
designated O-D pairs is too complicated to be considered,
since this problem is on the basis of multiple traveller equi-
librium problem (or User Equilibrium, UE). Also, we only
gave the efficient MSA algorithms under the three cases,
which are proved useful in real-world examples. Although a
counter-example hasn’t been found, the convergence of the
algorithms is still yet to be proved.
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