Report on Committed Oblivious Tranfer

Jiahong Shen, Kairong Luo, Yushen Wu
Institute for Interdisciplinary Information Sciences
Tsinghua University

1 Introduction

Besides cards, there’s also many ways to implement bit com-
mitment. In this report, we will view bit commitment proto-
col as a black box, igoring how it’s actually implemented,
and discuss some algorithms on committed bits:

* k-XOR operation
* Coping
* Oblivious Transfer

Alice, who makes the commitments, can neither change her
mind nor cheat during these operations. Also, the other agent
Bob cannot learn anything unexpected about the committed
bits, except the outputs of specified operations.

2 Notations

* In ordinary Bit Commitment(BC), we use the notation
{a} the the committed bit that Alice sends to Bob, if she
is able to reveal it as a later, but Bob is not able to learn
anything about a by himself. Also, Alice cannot change
her mind to open {a} as a.

* Also, we use the notation [a] to represent a Bit Commit-
ment with XOR relation (BCX) on the bit a, which will
be introduced in section ?.

3 A Special Structure of BC:
Bit Commitment with XOR relation (BCX)

Here we introduce a special BC protocol, called Bit Com-
mitment with XOR(BCX), in order to make use of its nice
properties:

1. To commit to b using a BCX @, Alice uses n pairs of
plain BCs

({01} {b1r}), ({b2r}; {b2r}), - ({bnr}, {bnr})
such that each pair XORs to b:
b ®b;r =0b,Vi € {1, ce ,TL}.
2. To open @, Alice opens all 2n plain BCs, and Bob ac-

cepts if all pairs XOR to the same value (thus accept it as
b).

3.1 Protocol of proving an XOR relation

A nice property of BCX is that, Alice is able to prove to Bob
that some BCXs satisfy a k-XOR relation

without giving away any one of their values. In the next,
we’ll present the protocol:
Denote the kK BCXs as plain BCs:

(b%L’ b%R)a (b%La b%R)a Ty (b'}zLa b’}LR) (1)

(b%[ﬂ b%R)a (b§L7 b%R)a) (bgzLa b?LR) (2)
(b]fLa blfR)’ (bgLa bIQCR)’ T (bﬁLv bfLR) (3)
Bob generates k£ random n-permutations o1, oa, - - - , 0y, to

Alice, and asks Alice to shuffle the BCX table in the follow-
ing way:

bj

L1 <i<n1<j<k @

J o J
(b, big) — (bgj(i)Lv
That is, to shuffle the j-th row using the j-th permutation
o;. For simplicity, we still use hte table above to denote the
result the result of permutations.

After the permutation, Alice calculates and announces

XOR results of each column:
k ; k j .
Gr = _@1biL;CiR =0 b, 1<i<n
j= J=

Foreachi =1,2,.--,n, Bobrandomly asks Alice to reveal
all {b/;} or {b]z}, 1 < j < k, and check whether they’re
consistent with ¢;;, or ¢;r. Also, Bob checks whether ¢;;, P
¢; g turns out to be the same for all i.

If so, then Bob is convinced that Alice has done permuta-
tions and XOR calculations correctly, and

c=cip ®eig =@y (b, ®bl) =V Vi

is expected to be the correct XOR result of all BCXs.

3.2 Validty

The problem is, with what probability can Alice prove to
Bob a wrong XOR result?

First of all, notice that Bob accepts only if every pair of
¢, ¢ir XORs to the same result, and accept is as the result.
So if Alice wants to prove a wrong result, at least one of
¢ 1, C;r should be inconsistent with the column entries in
the table. When Bob chooses either the left column or the
right column to check, he has at least one half probability to
find the inconsistency.

And that the n columns are randomly permuted, so the
event of finding error in each column is independent, thus
the probability that Bob is convinced is no more that 27",
which is negligible.

3.3 Coping a BCX

The proof above destroys the BCXs involved, so we need to
introduce a copying protocol. In this protocol we also need
a supervisor Bob that checks whether Alice copies the com-
mitted bit honestly:

Denote the BCX to be copied as @ Alice creates 3n pairs
of BCs s.t. each pairs XORs to b. Bob randomly partitions

them into 3 subsets , , with equal cardinality.

Then Alice proves to Bob that @ @ =0 (i.e. b = bg)
using the protocol above.

If so, Bob should be convinced that = = @, thus

the two copies are successfully produced.
And the validty is trivial: If Alice intends to produce a
wrong copy, she may add some wrong pairs into the 3n

pairs. However, when Bob randomly partitions , ,
, where’s only exponantially small probability that

contains all correct pairs while one/both of , con-

tains all incorrect pairs.

4 Committed Oblivious Tranfer

In the next, we will focus on the main topic: oblivious
transfer of committed bits (Committed Oblivious Transfer,
COT): Suppose Alice is committed to , , and Bob is

committed to @ After running COT ([ao |, [a1]) (@) Bob

will be committed to [a | = ay.

4.1 Preliminaries

* Oblivious Transer(OT): we need the assumption that we
can de ordinary OT on ayg, a1, b, so this is not suitable for
cards. (Q: can we do OTs with cards?)

* Linear coding: a [n, k, d] linear coding is C' a way to code
k-bit messages into a n-bit codeword, s.t. each pair of dis-
tinct codewords has Hamming distance at least d. All pos-
sible outputs of coding are called Codewords.

The main idea of Linear coding is to add extra error-
correcting bits, and we expect that the code we choose is
linear-time decodable.

4.2 Linear Coding

Formal Definition. Let H be any binary matrix. The lin-
ear code with parity check matrix H consists of all binary
vectors s.t.

HzT =0.

In this paper Linear-Time Encodable and Decodable Er-
ror Correcting Codes, the author proposed a linear coding,
named Superconcentrator Codes, which is quite efficient
such that all of these three operations can be achieved in lin-
ear time O(n):

 Constructing codewords,
* Decoding codewords,
* Proving a word is a codeword,

In the next, we’ll always use this coding:

4.3 Abstract Idea of the Protocol
Suppose Alice is committed to , , and Bob is com-

mitted to @ After running COT(,) (@), Bob will

be committed to [a | = a.

* Step 1: Determine a public linear coding C.

 Steps 2-9: Alice randomly pick two codewords cg, c;. Af-
ter rounds of ordinary OTs and proofs, we allow bob to
learn ¢y, where b is promised to be his committed bit @

¢ Step 10: Alice find a linear function h, so Bob can calcu-
late ap, from h(cp).

4.4 Protocol

In the next, we’ll display all details and necessary validty
proof. There’re also comments on the intention of each part,
and necessary validty proofs.

Step 1: Bob determines a [n, k, d] linear code C' and an-
nounces to Alice. (In fact we require that d > 2(c+¢)n, k >
(1/2+ 20)n for some small but constant ¢, o, which will be
discussed later).

Step 2: Alice randomly picks some cg, c; € C, make com-
mitments to all bits and E, and proves that

Step 3: Bob randomly picks subsets Iy, I; C {1,---,n},
with |Iy| = |I1| = on,Io NI} = 0, and sets b; = b for
i € Iy, while b; = bifi ¢ I.

Step 4: Alice runs OT(c%, ci)(b;) and Bob gets w® for 1 <
1 <n.

Step 5: Bob tells I = Io U I; to Alice. Alice opens c@ and
cj foreach 7 € I, and Bob checks whether w® he receives in
step 4 are correct.

Step 6: If so, Bob is able to decode the w' he receives, to
make the whole word a codeword w with the decoding algo-
rithm.

In steps 3-6, Alice transferred n bits to Bob, and Bob veri-
fied 20 bits among them. If Alice transferred en bits incor-
rectly, the probability the Alice’s mistakes are not discovered
by Bob

p<(1—20)" 5)

is exponentially small in n.

This shows Bob can obtain (n — on — en) bits of correct
information with high probability. So, if we take d > 2(c +
e)n, Bob can decode w correctly with high probability.

Step 7: Bob commits to this (his decoding ouput) for all
i € {1,---,n}, and give a zero-knowledge proof that w =

- : - is indeed a codeword.

Step 8: Alice randomly chooses I; C {1,---,n} such that
INI =0,|I2| = on, announces I to Bob and opens ¢}, ¢}
for i € I,.

Step 9: Bob proves that = ¢} fori € L.

This procedure is to make sure that in steps 3-6 Bob de-
codes the word w honestly. If it is not the case, then Alice
accepts with negligible probability:

Bob has already proved that w is a codeword, so at least
d > 2(o + €)n bits are different between w and c¢;,. Alice
verified on bits, so similarly we can see she accepts with
probability

p < (n;d) <(1=20—¢)" =¢(n) ©6)

exponentially small in n.

After the procedures above, we have already established
codewords cgy, ¢, for Alice, and w = ¢, for Bob, without
leaking any information.

Step 10: Alice chooses an amplification function h s.t. ag =
h(co), a1 = h(cy1), which does linear combination on bits.
Then he announces this ~ to Bob, and Bob is able to learn
ay = h(cy) in this way. At last Bob commits to this [a | = as.

4.5 Proofs Involved in the Protocol

In the protocol above, we didn’t dig into the details of two
proofs. Let’s discuss about that here:

The first thing is that, proof of a word ~ : ~

being a codeword. According to the property of linear
codes, we only need to prove some linear combinations of

ct,c?, - c" comes to zero:

He=0& > Hyd =0Vie Y J=0Vi (7)

J JiH;j=1

The second is to prove that [z | = h(~ .) for

committed z, 2*. We know that h is a linear function, so the
proof also reduces to prove the value of a linear combination
using XOR argument.

4.6 Complexity

We analyze the complexity in terms of the number of BCXs
and OTs used by the participants:

* In step 4, they performed O(n) OTs, when ¢ and ¢; are
transferred.

* Also, require O(n) BCXs for both Alice and Bob to com-
mit.

* All proofs can be achieved only with O(n) BCXs.

Additionally, we know we can build a BCX out of O(n)
ordinary BCs. So the overall complexity is O(n) OTs and
O(n?) BC operations.

5 Other Problems

Here we proposed some relavent questions that might be un-
solved:

* In the first paper (discussed by Kairong Luo and Jiahong
Shen), they’re several protocols for cards. We mentioned
that the way to do committed oblivious tranfer in this re-
port isn’t adaptive to cards, so whether we can do COT
with cards?

* We discussed the way to prove an XOR argument with
BCX, can we do more such as proving and AND/OR re-
sult on BCX? If not, can we introduce new structures to
archieve this goal?

6 References

* Crépeau, C., van de Graaf, J., and Tapp, A. Committed
oblivious transfer and private multi-party computation.
Advances in Cryptology - CRYPTO 95 (1995), pp. 110-
123.

e F. J. MacWilliams, N.J.A. Sloane, The Theory of Error-
Correcting Codes, North-Holland, 1977.

e D. Spielman, Linear-Time Encodable and Decodabble
Error-Correcting Codes, 27th ACM Symposium on The-
ory of Computing, 1995, pp. 388-397.

